OpenAIMonitor plugin
Configure environment variables in the environment of your service
export DD_SERVICE="your_app_name"
Import ddtrace package in the OpenAI code
pip install ddtrace>=1.13
Below is a code sample that you can run directly to test
import openai
from flask import Flask
from ddtrace import tracer, patch
app = Flask(__name__)
tag = {
'env': 'test',
'tenant': 'default', # Configuring tenant information
'version': 'v0.1'
}
# Set the Collector_DataDog address and port
tracer.configure(
hostname='localhost',
port='5001'
)
tracer.set_tags(tag)
patch(openai=True)
@app.route('/test/openai')
def hello_world():
openai.api_key = 'sk-***********' # Enter the openai api_key
openai.proxy = '*******' # Configure proxy addresses as required
return ChatCompletion('gpt-3.5-turbo')
def ChatCompletion(model):
content = 'Hello World!'
messages = [{'role': 'user', 'content': content}]
result = openai.ChatCompletion.create(api_key=openai.api_key, model=model, messages=messages)
print('prompt_tokens: {}, completion_tokens: {}'.format(result['usage']['prompt_tokens'],
result['usage']['completion_tokens']))
return result
def Completion(engine):
content = 'Hello World!'
result = openai.Completion.create(engine=engine, prompt=content, max_tokens=50)
print('prompt_tokens: {}, completion_tokens: {}'.format(result['usage']['prompt_tokens'],
result['usage']['completion_tokens']))
return result
if __name__ == '__main__':
app.run(port=5002)
Calling interface
curl --location --request GET 'localhost:5002/test/openai'
Open page http://localhost:8080/integration/agentComp?tenant=default.
Install the OpenAIMonitor plug-in on the Integration Components page Click to preview
OpenAI monitoring dashboards can be automatically generated to monitor token usage and interface requests